05.10.2016, 20:41 Uhr

BEXUS 22/23: Mit Forschungsballonen in der Atmosphäre neue Technologien testen

Start von BEXUS 22 (Foto: Copyright DLR: DLR (CC-BY 3.0).)
DLR Mittwoch, 5. Oktober 2016


Am 5. Oktober 2016 um 15.33 Uhr Mitteleuropäischer Sommerzeit (MESZ) ist der Forschungsballon BEXUS 22 vom schwedischen Raumfahrtzentrum Esrange bei Kiruna in Schweden in Richtung Stratosphäre gestartet. Bereits einen Tag später soll BEXUS 23 folgen. An Bord der beiden Ballongondeln befinden sich acht wissenschaftliche Experimente von Studententeams aus Deutschland, Polen, Tschechien, Belgien, Italien, Spanien und Portugal. Die Experimente der gemeinsamen Missionen des Deutschen Zentrums für Luft- und Raumfahrt (DLR) und der Schwedischen Raumfahrtbehörde SNSB stammen aus der Satellitenkommunikation und -navigation sowie der Astrophysik und der Technologieerprobung.

BEXUS 22: Satellitenkommunikation und -navigation auf Stratosphärenballons testen

An Bord von BEXUS 22 waren zwei deutsche Experimente: Lotus-D (Laser Optical Transmissionexperiment of University Students - Data) und TDP-3 (Technology Demonstrator Platform 3). Bei Lotus-D planten Studierende der TU Dresden, eine Kommunikationsverbindung mit LED-Licht zwischen einer kleinen mobilen Bodenstation und dem Forschungsballon herzustellen. Dabei wurde abhängig von der LED-Leistung, dem Abstand zum Ballon und den am Startgelände vorherrschenden Wetterbedingungen die maximal erreichbare Übertragungsrate der Daten - gemessen in Bit pro Sekunde - ermittelt.

Mit Hilfe einer umgebauten Leuchtdiode, die über ein Teleskop zur Ballongondel ausgerichtet wird, wurde ein Datensatz übermittelt. An der Gondel wurde der Lichtstrahl detektiert und aufgezeichnet. Über einen Vergleich mit den hinterlegten Daten wurde die erreichbare Datenübertragungsrate in Abhängigkeit von Umwelteinflüssen und Entfernung analysiert. Die sich hieraus ergebende Bitfehlerrate konnte direkt ermittelt werden.

TDP-3 - ein neues System zur Datenverarbeitung

Für die Atmosphärenforschung werden Höhenforschungsraketen und -ballone eingesetzt. Die Experimente werden jedoch durch die Größe des Ballons oder der Rakete begrenzt und benötigen daher kompakte Datenverarbeitungs- und Kontrollsysteme mit geringem Stromverbrauch. Für eine Fernsteuerung der Experimente oder die Übertragung von wissenschaftlichen Daten wird ebenfalls ein kompaktes aber dennoch leistungsstarkes Kommunikationssystem benötigt.

Die Studierenden der TU München haben mit ihrem Experiment TDP-3 ein neues Datenverarbeitungssystem entwickelt, das diese Bedingungen erfüllt und an verschiedene Experimente und Plattformen angepasst werden kann. Damit soll die Entwicklungszeit zukünftiger Experimente deutlich verringert werden. Das Team hat außerdem einen neuartigen Teilchendetektor in das Experiment integriert, um die Funktionalität des Datenverarbeitungssystems während des Fluges zu testen.

Zudem waren zwei weitere Experimente aus Italien und Polen in der Gondel von BEXUS 22 untergebracht: Bei dem Experiment STRATONAV der Sapienza Universität von Rom und der Universität Bologna wurde die Genauigkeit eines speziellen Navigationssystems während des BEXUS-Stratosphärenfluges getestet. Wenn das System funktioniert und ausgereift ist, kann es in Weltraummissionen zur Positionsbestimmung eingesetzt werden. Mit dem Experiment BuLMA wollten die Studierenden der Technischen Universität Warschau während der Mission Mini-Meteoriten und Staubpartikel einfangen, um diese im Labor zu untersuchen. Teile des Experiments können für Mars-Missionen angepasst werden.

BEXUS 23: Experimente zur Astrophysik und Erprobung neuer Technologien

Auf der Ballongondel BEXUS 23 werden vier Experimente getestet: OSCAR heißt das Projekt der Studierenden der Universität Hasselt in Belgien. Während der Mission werden Kohlenstoff-basierte optische Solar- und Sensorzellen für die Anwendung in der Luft- und Raumfahrt sowie die Leistung und Stabilität der organischen Solarzellen unter extremen Bedingungen, wie Strahlung und hohen Temperaturunterschieden, getestet. Außerdem haben die Forscher einen optischen Magnetometer-Prototypen zur Messung von schwachen Magnetfeldern entwickelt, der unter Stratosphären-Bedingungen getestet wird.

Das Ziel des Experiments PREDATOR der Tschechischen Technischen Universität Prag ist, Flughöhenunterschiede von Flugzeugen mittels eines kostengünstigen Systems zu messen und es als zusätzliches Referenzsystem für Fehlerkorrekturen zu testen. Dabei wird der Druck an zwei Orten auf der Gondel gemessen. Aufgrund der bekannten Entfernung kann die eigentliche Höhe des Ballons festgestellt werden.

Bei dem Team der Universität Porto aus Portugal stehen Navigationsinformationen im Vordergrund, die mithilfe von Radio- und Fernsehsignalen während des BEXUS Flugs ermittelt werden sollen. Dafür werden in dem Experiment SIGNON empfangene Signale prozessiert und Entfernungen bestimmt, um die Flugbahn des Ballons zu messen. Diese Navigationsmethode kann in großen Höhen von 450 bis 550 Kilometern bei Kleinsatelliten angewendet werden.

Die Studierenden der Universität Baskenland in Spanien testen mit ihrem Experiment ACORDE einen kostengünstigen und leichten Partikel-Detektor, der Spuren kosmischer Strahlung detektieren kann. Mit diesem Detektor wollen die Studierenden die Menge und Art der Strahlung während des Flugs messen.

BEXUS: ein Programm für den wissenschaftlichen Nachwuchs

Das deutsch-schwedische Programm BEXUS (Ballon-Experimente für Universitäts-Studenten) ermöglicht Studenten, eigene praktische Erfahrungen bei der Vorbereitung und Durchführung von Raumfahrtprojekten zu gewinnen. Die diesjährige Ausschreibungen des DLR Raumfahrtmanagements in Bonn sowie der Europäischen Weltraumorganisation ESA und des Swedish National Space Board SNSB für BEXUS 24/25 im Herbst 2017 und das Raketenprojekt REXUS 23/24 laufen bereits.

Neue Experimentvorschläge können bis zum 17. Oktober 2016 eingereicht werden. Jeweils die Hälfte der Ballon-Nutzlasten steht für Experimente von Studenten deutscher Universitäten und Hochschulen zur Verfügung. Die schwedische Raumfahrtagentur SNSB hat ihren Anteil auch für Studierende der übrigen ESA-Mitgliedsstaaten geöffnet. Die deutschen Studententeams erhalten technische und logistische Unterstützung vom Zentrum für Angewandte Raumfahrttechnik und Mikrogravitation (ZARM) in Bremen. Die Flüge werden von EuroLaunch, einem Joint Venture der Mobilen Raketenbasis des DLR (MoRaBa) und dem Esrange Space Center des schwedischen Raumfahrtunternehmens SSC, durchgeführt.
1
1
1
2
Diesen Mitgliedern gefällt das:
2 Kommentareausblenden
3.658
Gerhard Heising aus Stubai-Wipptal | 06.10.2016 | 08:26   Melden
3.658
Gerhard Heising aus Stubai-Wipptal | 07.10.2016 | 13:42   Melden
Schon dabei? Hier anmelden!
Schreiben Sie einen Kommentar zum Beitrag:
Spam und Eigenwerbung sind nicht gestattet.
Mehr dazu in unserem Verhaltenskodex.